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Abstract

We propose an algorithm to convert a single 2D image
of a human face into a full 3D model. In general the Single
View Reconstruction problem is under-constrained. How-
ever a human face cannot take any arbitrary shape, this
provides additional constraints on the 3D shape. Faces
have many common features which can be used to make the
problem trackable. Our algorithm uses a parametric face
model to fit an approximate 3D shape to the image. This
coarse shape estimate helps in estimating the scene light-
ing. Spherical harmonic coefficients are used to compactly
represent this lighting. 3D Shape obtained from paramet-
ric face model lacks accurate features and high quality de-
tails present on the face. We apply shape from shading
constraints on the image to get accurate shape with high
level of detail. An important component of our system is
cast shadow estimation. Cast shadows can be a source
of error in depth reconstruction, if not accounted for. We
predict the shadow intensity in different parts of the image
and compensate for it during shape estimation. This en-
ables our algorithm to handle a wide variety of incident
lightings. Key to the success of our method are accurate
shading models which we employ, handling effects like dif-
fuse albedos, specular highlights and cast shadows. We
provide both quantitative and qualitative results on images
from face datasets and on those downloaded directly from
the internet. Our system is completely automatic with no
user input required, which makes it a scalable solution.

1. Introduction

3D reconstruction of a face is not only an interesting
problem in itself, but also many other computer vision ap-
plications can make use of this information to make their
job easier. Applications of 3D reconstruction can be broadly
categorized into two categories; image synthesis and anal-
ysis. With the widespread use of cameras and images in
the world of internet, content aware image editing is an
important field. Users want to interact with their pictures
rather than treat them as static entities. If we can extract
3D information from an image, the user can be given op-

Figure 1: 2D image and its automatically generated 3D Re-
construction

tions like view point changing and image-based relighting
[23]. This can be used to insert someone into a virtual en-
vironment. This can also provide a physically plausible im-
age editing system, e.g., to apply virtual makeup on face
[17, 14]. Aforementioned applications fall in the category
of image synthesis. 3D information can also help with bet-
ter image analysis. State of the art face recognition algo-
rithms of today construct 3D face models to improve their
accuracy. Such reconstruction has applications in security
and surveillance as well because it provides better scene un-
derstanding. Even though 3D information can be captured
directly using a 3D sensor, conventional cameras remain to
be the most widely used image capture devices. Over a bil-
lion pictures are uploaded to the internet every day. If we
want to tap into this vast data reserve, single view recon-
struction has to play an important role.

Single View Reconstruction is inherently an ill-posed
problem. There are infinitely many possible shapes which
can generate the exact same image. During the image
capture process there is a loss of dimensionality which
makes shape recovery ambiguous. In the literature, a
number of cues have been used to resolve this ambiguity.
Some of them include Shape from X [25, 19] , vanishing



point based techniques [15] and symmetry cues. In our
algorithm we exploit the fact that human faces lie in a
low dimensional subspace. The variation between faces
of different people is always constrained. We use prior
cues about human faces and constrain our solution to lie
close to this subspace. This makes the problem tractable.
There has been extensive work in the field of single view
reconstruction of faces. But most of the work assumes
that the face follows a lambertian shading model and there
are no cast shadows on the face. These assumptions make
the problem easier but the solution obtained under these
assumptions is less practical.

Our proposed algorithm takes a single face image as
input and computes its 3D shape in the form of a depth
map. Specular highlights from the input are removed using
color-space rotation as a pre-processing step leaving behind
the lambertian component only. We then estimate a coarse
face shape by fitting a bilinear 3D morphable model into the
image which accounts for both the identity and expression
variation in the face. This model also provides an albedo
estimate of the face. The initial estimates of shape and
albedo are collectively called reference model. We use
this reference model to estimate lighting seen in the image
in the form of spherical harmonics. Because spherical
harmonics can compactly express a linear combination of
single light sources, we show that the recovered coefficients
are accurate even though the depth and albedo used in their
calculation lack details.

Using the estimates of lighting and shape, cast shad-
ows are computed and added to albedo to account for their
darkening effect. This makes sure darker regions due to
shadowing does not effect the rest of the algorithm. The
face shape is improved upon using shape from shading con-
straints along with estimated shadows, lighting and refer-
ence model albedo. A wedge like regularization term en-
sures that large abrupt changes in depth are penalized heav-
ily while allowing for small high-frequency variations in
shape at the same time. The following are our key con-
tributions:

e Dealing with specularity in captured image

e Handling of cast shadows on face, making the algo-
rithm robust

e Use of a piecewise wedge regularizer to preserve high
frequency details of shape

2. Related Work

The existing methods of Single View Reconstruction
for faces broadly fall into two categories. Those which
use a parametric model to explain the observed data. And

others imposing physically based constraints like shape
from X. Luckily these both complement each other quite
well. Which is why more recently people have used a
combination of the two techniques to obtain more accurate
results.

The use of parametric models for face reconstruction
became popular after it was shown to give promising
results by Blanz and Vetter [4]. Followup work was done to
recover 3D shapes using only a small number of landmark
points and statistical modeling in [3]. It sparked interest
of a lot of people in this field. FaceWarehouse[6] uses
a bilinear model instead which can capture effects of
both identity and expression of a person. It is the most
widely used face model today. The key idea behind these
techniques is to look at a large number of example face
geometries and find an orthogonal shape basis. These
basis can describe majority of the data in a small number
of shapes. For reconstruction, a linear combinations of
these shape basis can be used to synthesize a human face
and fit it back into the given image. The advantage of
using this scheme is that the number of parameters to esti-
mate is fairly small. But the problem with these methods
is that they can not express all variations of faces accurately.

The other class of methods, often called shape from X,
compute the depth separately for every pixel location.These
models make use of physically based models that underline
image formation. They estimate the geometry which would
produce the given image, so that it agrees with the defined
physical princinples. However often it is not possible to in-
fer depth just using image values because these system are
highly under-constrained. That is why often these meth-
ods take Lambertian reflectance assumption and other sim-
ilar simplifying assumptions to make the problem tractable.
These methods include [25] which gives a survey of other
SfS methods, and Johnson et al.[11]. More recent work in
this field includes Barron and Malik[1], Han et al.[9].

3. Overview

Given an image I(x, y), 3D reconstruction requires us to
estimate the depth z(x, y) at each pixel p(z, y). Integrabil-
ity constraints along with Shape from Shading can be used
to estimate surface normals 1i(x,y) as shown by Frankot
and Chellapa [8]. These normals can be integrated to get
the final depth. We however compute depths directly by ex-
pressing surface normals in terms of z(x,y) and applying
StS. More precisely we use the following parametrization
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where p and q are the discrete forward difference derivatives
of depth.
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Figure 2: Main stages of the pipeline. (a) is the input image, (b) is the fitted reference model, (c) shows a sphere illuminated
under estimate lighting, (d) estimated shape, and (e) shows the texture mapped depth from a novel view-point.

As a preprocessing step we remove specularities from
the input, getting an intermediate image that closely follows
Lambertian assumption. This is important because Shape
from Shading (SfS) constraints for Lambertian surfaces
have been studied far more extensively and are simple to

apply.

We start the reconstruction by computing a rough
estimate of face shape, fitting a parametric model into the
image [4, 6]. This estimated shape is used as reference
model in rest of the algorithm. The reference model
provides us with additional constraints to make the problem
trackable and also acts as a regularizer. The regularizer
becomes important because real world images contain
noise. Without the use of such a reference, noisy pixels
introduce large errors in final reconstructed depth. The
reference shape makes sure our final output lies close to
this initial estimate.

In order to compute the face depths using SfS, we need
to estimate the environment lighting. For surfaces that
exhibit close to Lambertian behavior, it is sufficient to
compute low frequency components of lighting only, using
a small number of parameters to express the complete
environment map. It has been shown that by using just 9
coefficients of spherical harmonic lighting, average error
is under 3% [2, 20]. We use a lighting model employing
13 parameters to specify the lighting (section 4.3) which
account for quadratic dependence on surface normals. We
use the low frequency estimated normals from reference
shape to compute these parameters.

Cast shadows prove to be problematic for SfS con-
straints because they assume direct lighting. The darkening
of image observed due to cast shadows introduces errors in
final depth. Given the reference face shape and estimated
lighting, we estimate cast shadows before depth refinement.

To be precise, for every pixel p(x,y), we compute a
darkening factor which informs the algorithm how much
darkening is expected due to cast shadows. These are
accounted for in rest of the pipeline steps.

Now that we know about the lighting as well as an ap-
proximate face shape, we apply SfS constraints on the given
image to find out detailed face geometry. For this purpose
we set up the a non-linear least square optimization problem
with the following cost function:
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where the first term is the data term, quantifying how
closely our estimated depth matches input image. Second
term is the regularization, which is expressed as some
function f(-) of estimated depth z and reference depth
Zrey. We will discuss this cost function in detail in section
4.4, along with regularization function used.

4. Algorithm Pipeline

We here discuss in detail, each module of our system
pipeline.

4.1. Pre-processing

Most subsequent modules of our system assume that
our surface (face) loosely follows labertian shading model.
Lambertian shading means that apparent brightness of a
surface does not depend on the viewing direction. Only
contributing factor is the angle between light source and
surface normal. All matte surfaces follow this model,
whereas surfaces exhibiting specular highlights cannot
be explained by this model. Faces mostly behave in a
lambertian manner but have small intensity of specular
highlights in some regions. In order to identify these



Figure 3: Specularity removal as a preprocessing step. Left
to right: Input image, Regions of face, Diffuse component,
Specular component

regions and remove these highlights, we use the algorithm
described in Li et al.[16].

We run a face landmark detector on input image and di-
vide it into 10 basic regions as shown in 3, second from left
image. For each of these regions, we compute the mean
color of pixels which are not either too bright or too dark.
Our hope is that these pixels do not suffer from effects like
shadowing and specularities. This average color is assumed
to be the approximate albedo of that face region. These pix-
els are projected into RGB space and a plane is fitted into
them. Each face region is described by a different RGB
plane. The common axis of all these planes is found by
minimizing the following cost function:
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where 1 is the vector being optimized for and nj are the
normals to planes fitted in each face region. If there is a
difference in albdeo of different face regions, the color vec-
tor found as a result of the optimization would be pointing
in light source color. This follows from the fact that when a
surface of albedo color c3 is lit by a light source of color ¢2,
the surface appears to be of a color, that is a linear combina-
tions of the two color vectors [13]. So if each face regions
has a different albedo, the only common axis of all those
planes should be the light source color vector.

4.2. Reference Model

The image formation equation that gives us a rela-
tionship between image intensity and surface normals
has a lot more unknowns than the number of constraints
provided by a single image. Other than plane normals of
surface depth, surface albedo (texture) and lighting are also
unknown. The problem is ill-posed if we do not apply any
additional constraints. In order to provide those constraints,
a reference model is fitted into the image. This model
provides a low resolution depth depth map of the face.
This captures the overall shape and structure of face and
provides the rest of the algorithm with an estimate of the

(a) Image with contours (b) Reference shape

Figure 4: Reference model fitting

final depth to be recovered. This reference model can be
used to apply additional constraints on the solution and
to make the problem trackable. For this purpose, use of a
parametric model to estimate the depth is the natural choice.

Fitting a parametric face model into a 2D image to
estimate the face shape was shown to work successfully in
the seminal work of Blanz and Vetter[4]. The most recent
and prominent work following the same train of logic [6]
uses face scans of 150 subjects with various expressions
to come up with a bilinear face basis. These basis capture
both the identity and facial expression of a face. We make
use of this face model to get the reference.

We start by finding landmark points on the input face im-
age using Active Shape Models with Stasm [18]. This gives
us landmark points both inside the face (such as eyes, nose,
lips etc) and at face contours. Corresponding landmarks
points on the 3D face model are also detected and the pro-
jection error of these model points is minimized using the
following error function:

Be = SlIsR(Coo wh xs who)l” @)
where s, R are the pose parameters (scale and Rotation)
and wy, W(pr are internal parameters of the model. Ci
are the internal vertices of model bilinear basis. The opti-
mization is performed using coordinate descent method as
described in [24]. To make sure we do not inherit any issues
from the bilinear model itself, for some experiments we use
Basel face model[10] in place of the Facewarehouse. Once
a parametric face model has been fit into the image, the
ambiguity in pose and size of face is resolved. Also some
aspects of the shape of the face are captured at this stage.
The model not only gives rough information about the
shape of face but also its albedo. We will use this albedo
estimate for SfS in later stage of the pipeline. An example
model fit into an image can be seen in fig 4.



Use of a parametric model to estimate face shape is a
tangential method to Shape from Shading. In some respect
it is also complimentary to the SfS technique. Parametric
model does a good job at capturing overall structure and its
solution is always plausible face shape. However, it fails to
capture the unique details which may be specific to a partic-
ular person. Because it uses a linear combination of some
basis shapes, it can capture only limited amount of varia-
tions in shape. This is a general limitation of all parametric
models.

4.3. Lighting Estimation

Accurate estimation of lighting is essential for depth es-
timation using SfS. Any errors incurred at this stage of the
algorithm would directly effect the final recovered depth.
We use spherical harmonics (SH) for representation of en-
vironment lighting. The SH coefficients are computed such
that when reference model is rendered using our lighting
model, it matches the input image. We infer the lighting
based on the shading seen in input image. But as a hu-
man face mostly follows Lambertian assumptions, it is hard
to accurately predict higher order lighting effects. If has
been shown by [2] that if we use spherical harmonic basis
to represent illumination on Lambertian surfaces, using just
4 coefficients captures 70% of the pixel values correctly.
Likewise, using 9 coefficients captures more than 97% of
the pixel values accurately. We test our system under two
different lighting models, a first order and a modified sec-
ond order spherical harmonic system. The following sub-
sections contain more detail about these models.

4.3.1 1storder SH lighting

Use of spherical harmonic lighting basis and coefficients is
a compact way of representing environment lighting. Under
the Lambertian assumption, shading equation for SH model
can be written as:

I(z,y) = p(w.y)(I- Y (7)) (5)

where [ are the lighting coefficients and Y are the SH ba-
sis functions. We find the values of these SH coefficients
by minimizing the difference between the two sides of the
equation. This can be solved linearly as matrix multiplica-
tion as: .

l=1- (prefY(ﬁref)>7l (6)

For 1st order approximation of the above system,
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4.3.2 Quadratic SH lighting

It has been shown in [20, 11] that for accommodating more
complex lighting scenarios than a linear combination of di-
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(a) Input image (b) Reference model

Figure 5: Landmarks for Moving Least Squares Morphing.
As it can be seen from the figures, we only retain landmark
points which are inside the face and discard contour points.
Also after the landmarks are obtained, we fit splines into
them to get smooth and even morphing, independent of the
location of individual landmarks detected.

rectional light sources, we can use the following quadratic
parametrization for SH lighting:

I=p(z,y) (A" A +0"b+c) ®)

where A, b and ¢ are model parameters. We have tested both
of the above lighting systems and the difference between the
results of the two are minimal. This is due to the fact that
Lambertian surfaces act as low pass filters on light falling
on them and they filter out the higher frequency component
of light. More details on how to solve for this optimization
can be found in [7].

4.4. Shape From Shading
4.4.1 Reference Alignment

The parametric model fitting provided a coarse alignment
between the image and reference model. This level of
alignment was acceptable for computing lighting coeffi-
cients because the system was highly over-constrained.
Only 4 to 13 unknowns (lighting coefficients) were to be
computed using thousands of constraints (one for every
pixel). Any errors in alignment were averaged out and
their effect was cancelled out in the complete optimization.
But in the application of SfS, we have as many number
of unknown as many pixels. For every single face pixel,
we need to compute a depth value. Any misalignment
between the reference and input image could introduce
serious errors in the final depth, specially in areas of high
variations (e.g. around the nose). To resolve this problem
we add a dedicated alignment stage in the pipeline. This
alignment is achieved by a two step process.



(b) Predicted shadows

(a) Input image

Figure 6: Fractional cast shadow prediction for an input 2D
image.

First we perform morphing between landmark points of
reference model and input image. Ideally these landmarks
should already be lined up after the reference fitting
stage. But it is possible certain configurations were highly
unlikely and the morphable model was not able to align
all landmark points between the two sets of images. In
this case corresponding sets of landmark points (identified
using Stasm tracker) are aligned. In doing so, we also
move the pixel near those landmark points to morph the
image realistically and smoothly. We use Moving Least
Squares[21] for performing this operation. Landmarks
detected on image and reference for morphing can be seen
in fig 5.

We then compute a dense optical flow between image
and reference. This flow is applied on reference model to
establish tight pixel to pixel correspondence with the input
image. We perform multi-scale optical flow with multiple
iterations at each level of the pyramid. For the results shown
in this paper, we used 3 levels deep pyramids with 2 itera-
tions of flow at each level. We are able to recover large vari-
ations in shape using this technique. The computed flow is
applied on both the reference shape and albedo. For flow
computation we use Large Displacement Optical Flow[5].

4.4.2 Cast Shadow Estimation

In the real world pictures, it often happens that some parts
of the face cast shadows on other areas. The shadow of
nose can often be seen in portraits. This self shadowing
changes the intensity of certain pixels and they no longer
follow the SfS constraints. If we do not account for this
darkening, it can introduce errors in recovered depth.

Cast shadows in the domain of 3D Face Reconstruction
have been overlooked. Almost all the existing literature
ignores cast shadows and directly applies SfS to compute
depths. One reason for this simplifying assumption is that
cast shadow prediction is an expensive task. So to keep the

execution time short, often they are ignored. We introduce
an efficient algorithm to compute these shadows using
PRT (Precomputed Radiance Transfer) framework [22].
PRT allows you to do pre-computations, promising faster
rendering speeds at runtime. It is a standard technique
used by high-end games in the industry. We make use of
the pre-computation trick to quickly estimate fractional
shadowing even when lighting is not known before-hand.

In order to compute the shadowing, we do pre-
computations for rendering the face reference under arbi-
trary lighting with and without shadowing. At run-time, we
render the face under both conditions (with and without cast
shadows) and compute a ratio of the two to find fraction of
light blocked due to shadowing. We compensate for this ex-
pected darkening by multiplying this darkening factor with
albedo and merging them together. The rest of the algo-
rithm runs as usual and is not effected by shadowing. If the
darkening factor is S, it can be computed as:

[ M
S=" 9
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where M, is the precomputed coefficients for shadowed
rendering and M, are precomputed coefficients for non-
shadowed rendering. Refer to [22] for more details. The
ratio of the two, S, provides with the relative shadowing.
The factor is incorporated into albedo p’ to get the updated
albedo p as:

p(x,y) = S(z,y)p' (z,y) (12)

Relative shadowing for a specific example can be seen in
fig 6. It is worth noticing here that we perform the shadow
estimation based on reference shape, which is the initial es-
timate of the face shape. We assume that during the opti-
mization, the changes in depth do not change the shadowing
pattern significantly. This assumption helps us do the pre-
computation once and use the same results at each iteration
of optimization.

4.4.3 Depth Estimation

SfS constraints along with reference model and estimated
lighting are used to estimate the refined depth of the face
at each pixel. We use the depth-map representation of face
shape in our work. This representation makes it easier to
form correspondence between given image and estimated
depth. This means there is a 1 — 1 correspondence between



(a) High reg

(b) Low reg (c) Piecewise Wedge

Figure 7: Affects of different regularization terms on depth.

pixel values and depths.
To compute the shape, we set up the following optimization:

min Y (I = pres(ii Al +77b 4 ¢)* +
(z,y)eTl
M(AG * d.)% + \a(d,)?,

where d, is the difference between estimated and reference
depths. First term is the data term which enforces SfS
constraints. Second and third terms are for regularization.
Second term makes sure that if z goes away from z.y, it
does so in a smooth manner. The last term makes sure our
final estimate is not very far away from initial estimate.
We solve this optimization in terms of z directly. That
ensures we do not have to enforce integrability constraints
separately. They get baked into the optimization inherently.

As our data term involves surface normals, these are
computed using forward differences. Hence each data term
depends on more than one depth variables. We are not able
to compute the data term at the face boundaries. At these
boundary pixels we apply boundary constraints. The con-
straint we choose for these pixels is the following:

V(Vz-ii) it =0

This constraint means that at boundary pixels, if you travel
towards the center of the face, the slope of depth in that di-
rection should no change. This ensures that surface remains
smooth at boundary. We take the motivation of this bound-
ary condition from Kemelmacher 2011[12].

4.4.4 Piecewise Wedge Regularizer

The optimization of depth involves a regularization weight.
Setting this weight to one specific value does not give ideal
results. If we set the regularization very large, estimated
depth follows the overall shape of the game nicely but most
of the details on face are smoothed out and blurry. On the
other extreme, if we set to too low, details are preserved
nicely but structure of the face break down. There are un-
desirable artifacts on the recovered depth. A comparison of

Regularizer penalty

Figure 8: Piecewise Wedge Regularizer

the two extreme weights can be seen in 7(a), 7(b).

We propose to use a piecewise wedge shaped regularization
term instead. The penalty imposed by this term is small bel-
low a certain threshold . In this range, the penalty function
is scaled down by a factor «, as seen in figure 8. This al-
lows for small high frequency changes to be permitted, but
discourages larger irregularities. The depth result generated
using the proposed regularizer is shown in 7(c).

5. Results

Qualitatively evaluating the accuracy proved to be a chal-
lenging task. For quantitative analysis, there must be im-
ages of faces along with ground truth depth maps of faces
available. Collection such data is not straight forward. Not
many datasets exist which have both of these quantities
available. We have reported our results on USF face dataset.
But it should be noted that the dataset itself is not com-
pletely accurate. The errors shown in results could arise
due to our algorithm as well as the errors in ground-truth
itself.

5.1. USF Dataset depths

The dataset contains depth maps and albedo maps of
around 80 subjects. The the subjects are in neutral poses
which makes the data uninteresting. Also the albedo maps
provided are not accurate. Subject to these errors, we gen-
erate images using the given depth maps and albedos by
simulating a combination of 3 light sources projected from
random directions. Each image is scaled to size 480 x 360.
Errors are reported in average error in millimeters per pixel
and percentage errors in figure 9. For almost all the images
in the dataset, the mean error is less than Smm per pixel.
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Figure 9: Errors in reconstruction of USF dataset faces, re-
ported in cm. The red lines denote errors in reference faces.
Blue lines are the errors after optimization. It can be seen
that in every model, the error in depth reduces substantially.

5.2. Internet Images

We downloaded face images directly from the internet,
to test our algorithm on uncontrolled data. The system was
given no information about the pose or lighting of the im-
age. Fully automated results on some internet images can
be seen in figure 10.

5.3. USF Dataset lighting estimation

We generated images using single light source syntheti-
cally from USF dataset. From these synthetic images, light
source direction is estimated and compared with ground
truth direction. For each direction should here, the reported
are mean errors computed over whole dataset in degrees.
The model of lighting used for this experiment was st or-
der SH lighting. Errors can be seen in fig 11. We find that
our lighting estimation error is reasonably low. It is always
less than 10° mean error.

5.4. Cast Shadow Estimation

In figure 12 it can be seen that without cast shadow esti-
mation, recovered depth is visually incorrect. This problem
is resolved when we take into account cast shadows.

6. Applications

We have developed applications over our system to test
its reliability. We can successfully perform view-point
changing and light source changing. Accurate images can
be generated under entirely new lighting environment maps.
However one application that we are still looking to make is
a web interface that can provide users with the ability that
they can upload their 2D image on the server and get back
their 3D face model within minutes.

7. Conclusions

We provide with a completely automatic end-to-end face
reconstruction system that is robust enough to handle im-
ages under varied situations and conditions with complex

effects like specular highlights and cast shadows. We pro-
vide the novel way of handling cast shadows and combining
multiple depth maps together to get more accurate results.
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Figure 10: Depth reconstruction on internet images. Column 1,3 show input images and column 2,4 show the corresponding
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