Center for Visual Computing

Motivation

Virtual makeover²

- Why use just a single image? 1.8 Billion pictures shared everyday in 2014!³ Treasure of images that can be tapped
 - Images are much cheaper to acquire, compared to RGB-D

A good solution should be able to handle various view points, illuminations and

Single Image 3D Face Reconstruction

Muhammad Ahmed Riaz Ravi Ramamoorthi, Computer Science and Engineering

System Pipeline

Input image

Lighting and reference estimation

Aligned reference (optical flow)

Results

Shape with varying regularization

Cast Shadows

Image

Image

3D Reconstruction

Shape Fusion

Lighting '

Lighting 2

Special thanks to William Smith for providing 3D Morphable Model code and data.

UC San Diego **Computer Science and Engineering JACOBS SCHOOL OF ENGINEERING**

Design Overview

Fit a parametric reference model to image

Estimate spherical harmonic lighting coefficients using reference shape and albedo

 $\vec{l} = \frac{I(x,y)}{\rho_{ref}} \vec{Y}_{ref}^{-1}$

Predict cast shadows by a PRT system and compensate for them using albedo

Optimize for shape, penalizing it when its rendering deviates away from input image

 $\min_{shape} \int (I - \rho_{ref} \vec{l} \cdot \vec{Y}(\vec{n}))^2 + \lambda_1 (\triangle G * d_z) + \lambda_2 d_z$

Fuse together reconstructions with different regularization weights to get sharp details

Conclusion

- Cast shadows introduce errors in 3D Can be handled by shadow estimation Fusion of multiple reconstructions improves output quality
- Fused reconstruction preserves shape as well as crisp details
- Novel applications like face relighting, viewpoint changing have be shown to give
- promising results after good reconstruction

References

[1] Kholgade, Natasha, Iain Matthews, and Yaser Sheikh. "Content Retargeting Using Parameter-parallel Facial Layers." Proceedings of the 2011 ACM

- SIGGRAPH/Eurographics Symposium on Computer Animation SCA '11, 2011. [2] Mallick, Satya P., Todd Zickler, Peter Belhumeur, and David Kriegman. "Dichromatic Separation." ACM SIGGRAPH 2006 Sketches on - SIGGRAPH '06, 2006. [3] Meeker, Marry. Internet Trends D11 Conference. Report. 2013.
- [4] Kemelmacher-Shlizerman, I., and R. Basri. "3D Face Reconstruction from a Single Image Using a Single Reference Face Shape." IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Trans, 2011.
- [5] Blanz, Volker, and Thomas Vetter. "A Morphable Model for the Synthesis of 3D Faces." Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH '99, 1999.
- [6]Lupo, Francesco. Expressions. July 29, 2012. http://frankinolupo.blogspot.com/search/label/3D%20Modeling.

For more information, suggestions and queries cseweb.ucsd.edu/~mriaz mriaz@ucsd.edu

