

EE 320

Computer Organization

Course Project Final Report

Submitted to

Dr. Jahangir Ikram, Shahrukh Athar

{jikram, shahrukh.athar}@lums.edu.pk

Submitted by

Muhammad Ahmed Riaz, Muhammad Khurram Shahzad,

Muhammad Safdar Iqbal, Muhammad Aqeel Raza

{12100035, 12100001, 12100005, 12100079}@lums.edu.pk

mailto:%7bjikram,%20shahrukh.athar%7d@lums.edu.pk
mailto:noone@lums.edu.pk
mailto:noone@lums.edu.pk

Original Proposal

Instructions Implemented

R-type
 ADD

 AND

 OR

 SUB

 JR

I-type
 ADDI

 ANDI

 ORI

 LW

 SW

 BEQ

 BNE

J-type
 JAL

 J

Instruction Detail

ADD Rd, Rs, Rt Rd=Rs+Rt 0000 R-Type

AND Rd, Rs, Rt Rd=Rs & Rt 0001 R-Type

SUB Rd, Rs, Rt Rd=Rs – Rt 0010 R-Type

OR Rd, Rs, Rt Rd=Rs | Rt 0011 R-Type

JR Rt PC=Rt ; Rs=X ; Rd=X 0100 R-Type

ADDI Rt, Rs, Imm Rt=Rs+Imm 0111 I-Type

ANDI Rt,Rs,Imm Rt=Rs & Imm 1000 I-Type

ORI Rt, Rs, Imm Rt=Rs | Imm 1001 I-Type

LW Rt, Rs, Imm Rt=Mem(Rs+Imm) 1010 I-Type

SW Rt, Rs, Imm Mem(Rs+Imm)=Rt 1011 I-Type

BEQ Rt, Rs, Imm If Rt==Rs: PC=PC+1+Imm 1100 I-Type

BNE Rt, Rs, Imm If Rt!=Rs: PC=PC+1+Imm 1101 I-Type

 JAL JumpAddr PC=JumpAddr ; Ra=PC+1 0101 J-Type

J JumpAddr PC=JumpAddr 0110 J-Type

Block Diagram

Instruction Format

R-Type Instruction Set

Opcode RS RT RD DON'T CARE

4-bit 3-bit 3-bit 3-bit 11-bit

 I-Type Instruction Set

Opcode RS RT Imm DON'T CARE

4-bit 3-bit 3-bit 8-bit 6-bit

 J-Type Instruction Set

Opcode DON’T CARE Imm DON'T CARE

4-bit 6-bit 8-bit 6-bit

Control Unit Table

OPCODE Function C0 C1 C2
RegWrite

C3 C4 C5
ALU Function Select

C6 C7
~MemWrite

C8

0000 ADD 0 0 1 0 01 100110 01 1 0

0001 AND 0 0 1 0 01 10110X 01 1 0

0011 OR 0 0 1 0 01 1110X1 01 1 0

0010 SUB 0 0 1 0 01 011000 01 1 0

0111 ADDI 0 0 1 1 01 100110 00 1 0

1001 ORI 0 0 1 1 01 1110X1 00 1 0

1000 ANDI 0 0 1 1 01 10110X 00 1 0

1010 LW 0 0 1 1 00 100110 00 1 0

1011 SW 0 0 0 1 0X 100110 0X 0 0

1100 BEQ 1 0 0 0 0X 011000 0X 1 0

1101 BNE 1 0 0 0 0X 011000 0X 1 1

0101 J 0 1 0 1 0X 101001 0X 1 X

0110 JALR 0 1 0 0 0X 101001 0X 1 X

Changes during Implementation

Instructions Added/Modified

Instruction Action Opcode Type

J JumpAddr PC=JumpAddr 0101 J-Type

JAL JumpAddr Ra=PC+1; PC=JumpAddr 1111 J-Type

JR Rt PC=Rt; 1110 R-Type

JALR Rt Ra=PC+1; PC=Rt 0110 R-Type

Conventions followed:
The following specials registers were reserved for several features we implemented

$R0 - Temporary 1 ($t0)

$R1 - Temporary 2 ($t1)

$R2 - Temporary 3 ($t2)

$R3 - Function Argument 1 ($a0)

$R4 - Function Argument 2 ($a1)

$R5 - Function Output ($v0)

$R6 - Stack Pointed ($sp)

$R7 - Return Address ($ra)

Changes to Instruction Format
BYTE 1 BYTE 2 BYTE 3

R-type format

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Rt Rs Opcode Don’t Care Rd Rt Don’t Care

0 2 1 0 3 2 1 0 2 1 0 2 1

I-type format

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Rt Rs Opcode Immediate Rt Don’t Care Imm

0 2 1 0 3 2 1 0 5 4 3 2 1 0 2 1 7 6

J-type format

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Don’t Care Opcode Immediate DC Don’t Care Imm

 3 2 1 0 5 4 3 2 1 0 7 6

Changes to Control Unit
OPCODE Function C0 C1 C2

RegWrite

C3 C4 C5
ALU Function Select

C6 C7
~MemWrite

C8

0000 ADD 0 0 1 0 01 100110 01 1 0

0001 AND 0 0 1 0 01 10110X 01 1 0

0011 OR 0 0 1 0 01 1110X1 01 1 0

0010 SUB 0 0 1 0 01 011000 01 1 0

0111 ADDI 0 0 1 1 01 100110 00 1 0

1001 ORI 0 0 1 1 01 1110X1 00 1 0

1000 ANDI 0 0 1 1 01 10110X 00 1 0

1010 LW 0 0 1 1 00 100110 00 1 0

1011 SW 0 0 0 1 0X 100110 0X 0 0

1100 BEQ 1 0 0 0 0X 011000 0X 1 0

1101 BNE 1 0 0 0 0X 011000 0X 1 1

0101 J 0 1 0 1 0X 101001 0X 1 X

0110 JALR 0 1 1 0 10 101001 10 1 X

1110 JR 0 1 0 0 0X 101001 0X 1 X

1111 JAL 0 1 1 1 10 101001 10 1 X

Problems
We faced the following problems.

PCB Procurement
We decided to build the processor hardware on PCBs instead of Veroboards. We were encouraged by Dr

Jahangir Ikram as well. But the required double-sided PCBs were not available in the lab; neither were

they procured in time. In the end, we had to procure them our self. (We are thankful to Dr Ikram for

personally financing the procurement.)

Etching Machine problems
We tried to use the etching machine from the Physics Lab for fabrication of the double-sided PCB, but

the machine was not properly calibrated with software used for designing the PCB. Hence we had to

give up on the machine, after wasting 4 to 5 days trying to get it to work.

Conventional double-sided PCB etching (ironing method)
1. Aligning both the sides of the PCB while printing the circuit onto the PCB by ironing is a real

challenge and it cost a lost effort and time.

2. Keeping the size of the circuit reasonable while using an appropriate width for tracks and pads are

opposing goals.

Soldering on a PCB
While soldering jumpers, the copper wiring on the manually-etched PCB wore off. Therefore, we

decided to give up using PCBs for the project, just 10 days before the deadline.

How to avoid PCB-related problems?
1. Listen to Sir Shahrukh Athar. (He tried to stop us from using PCBs.)

2. For PCB design, DipTrace is good software to use. Its auto-routing feature is really good.

3. Do not use Proteus for PCB design, especially its (horrible) auto-routing feature.

4. Tracks and pads in your design should be wider than at least 80 Th in the software.

5. If you plan to use an etching machine, make sure you know its use inside out before starting the

project.

Dry Joints
We had to make sure each and every soldered connection was properly covered with metal, i.e. there

were no dry joints in the circuit. This point cannot be over-emphasized.

ALU
During the testing of the ALU component, we were having a peculiar problem in which the ADD and AND

instructions were working properly, but we were not able to do SUB and OR. The reason being that

there is 1-bit difference between the OPCODEs of ADD and SUB (or AND and OR). That bit was FLOAT,

and since float is always interpreted as HIGH, this was causing us problems.

ENABLE signals of MUXes
The ENABLE signals of some MUXes were not properly grounded due to dry joints, causing them to FLOAT.

Extra shorts
There were many extra shorts in the circuits (obviously causing many varied problems). This calls for

proper short testing prior to interfacing.

Using Connectors
Instead of soldering GROUND, VCC and CONTROL signal wires onto the Veroboard directly, we used

connectors. The directly soldered wires repeatedly break out, causing GROUND, VCC the CONTROL signals to

FLOAT.

Labeling
During the interfacing phase, we usually kept forgetting what different sets of male pins and connectors

did and how did they interconnect. Hence, we decided to label each input and output in every

component of our processor, including labels for LSBs and MSBs.

Faulty trainers and Problems in Clocks
Due to prolonged use, many trainers in the EE lab have become faulty in many ways; the most common

problems being faulty clock switches. They sometimes cause panic by sending spurious clocks to the

circuit.

Synchronizing Register File clock with Rest of the Processor
We had given the main processor clock directly to every component and for register file we had ANDed

the clock with RegWrite and then NOTed it. But NOT gate resulted in some delays that caused the

current instruction output to be written to the Register file in the current clock edge instead of the

opposite edge as originally intended. So we gave the NOTed clock to the other components and the

original one to the Reg file to fix this problem.

